2 research outputs found

    Generative Modeling of Time-Dependent Densities via Optimal Transport and Projection Pursuit

    Full text link
    Motivated by the computational difficulties incurred by popular deep learning algorithms for the generative modeling of temporal densities, we propose a cheap alternative which requires minimal hyperparameter tuning and scales favorably to high dimensional problems. In particular, we use a projection-based optimal transport solver [Meng et al., 2019] to join successive samples and subsequently use transport splines [Chewi et al., 2020] to interpolate the evolving density. When the sampling frequency is sufficiently high, the optimal maps are close to the identity and are thus computationally efficient to compute. Moreover, the training process is highly parallelizable as all optimal maps are independent and can thus be learned simultaneously. Finally, the approach is based solely on numerical linear algebra rather than minimizing a nonconvex objective function, allowing us to easily analyze and control the algorithm. We present several numerical experiments on both synthetic and real-world datasets to demonstrate the efficiency of our method. In particular, these experiments show that the proposed approach is highly competitive compared with state-of-the-art normalizing flows conditioned on time across a wide range of dimensionalities

    Learning dynamics on invariant measures using PDE-constrained optimization

    Full text link
    We extend the methodology in [Yang et al., 2023] to learn autonomous continuous-time dynamical systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed approach.Comment: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 33, Issue 6, June 2023, and may be found at https://doi.org/10.1063/5.014967
    corecore